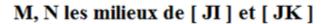


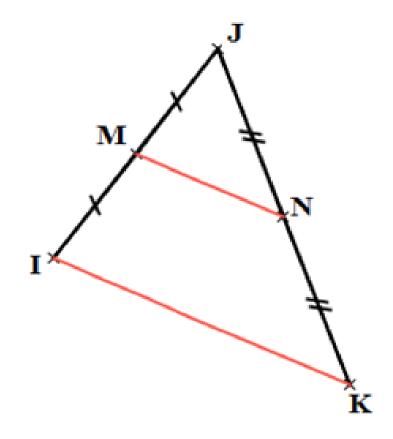
Maths: théorème de milieux

Classe :EB8 A,B,C et D

Lundi 12 avril 2021

Préparée par : l'enseignante Hala Sourani et M. Hayssam Osman





D'après le théorème de milieu dans le triangle IJK

$$MN = \frac{IK}{2}$$
(MN) // (IK)

Cas d'un triangle : du parallélisme vers le milieu

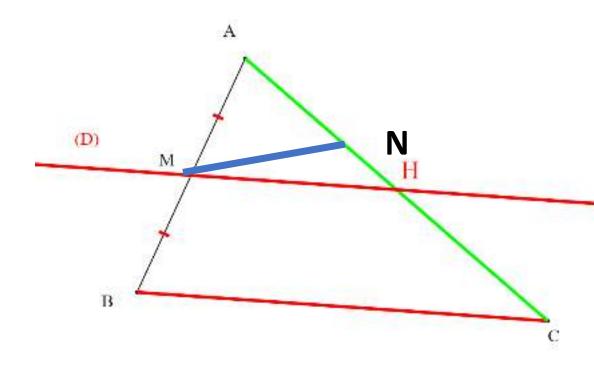
De parallélisme vers le milieu

Soit un triangle ABC.

Du milieu M de [AB] menons la parallèle à [BC]; elle coupe [AC] en un point H. Démontrons que H coïncide avec le milieu N de [AC].

D'après le théorème des milieux, le segment [MN], joignant les milieux de [AB] et [AC], est parallèle à [BC]. Donc, (MN) et (MH) sont deux parallèles menées de M à (AB); elles doivent coïncider d'après le postulat d'Euclide. Ainsi, on a :

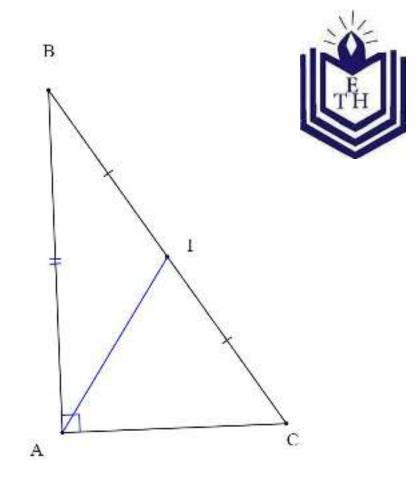
La droite menée du milieu d'un côté d'un triangle parallèlement à un autre côté passe par le milieu du troisième côté.



Réciproque de théorème de milieu dans un triangle

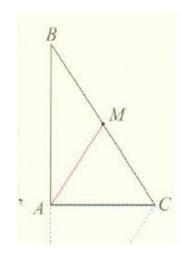
l'hypoténuse c'est le coté opposé à l'angle droit.

D'où dans un triangle rectangle la médiane relative à l'hypoténuse vaut la moitié de l'hypoténuse.

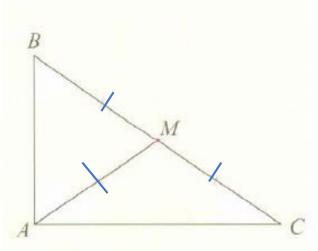


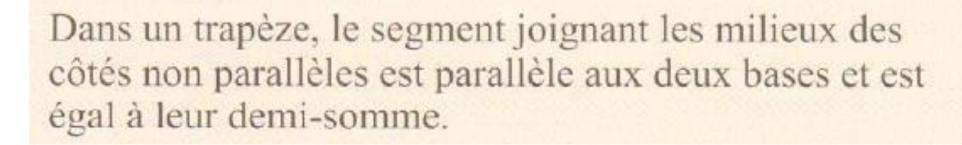
II. La médiane relative à l'hypoténuse dans un triangle rectangle

Dans un triangle rectangle, la médiane relative à l'hypoténuse est égale à sa moitié.



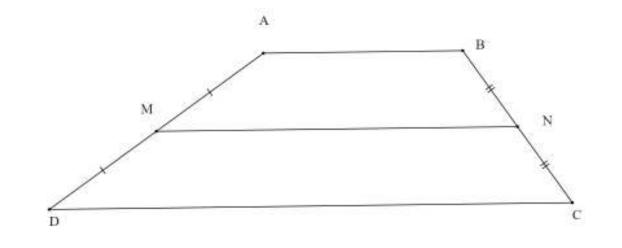
Un triangle dont la médiane issue d'un sommet vaut la moitié du côté opposé est rectangle en ce sommet.





(MN)//(AB)//(DC)

$$Et MN = \frac{AB + DC}{2}$$

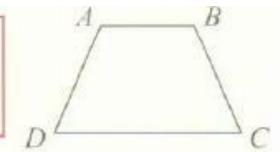


23/04/2021

7

Trapèze isocèle

Un trapèze est dit *isocèle* si les angles adjacents à une même base sont égaux.



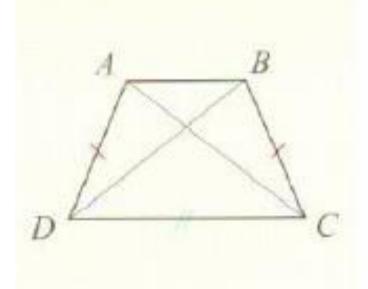
Dans un trapèze isocèle, les côtés non parallèles sont égaux.

Réciproquement, on démontre que :

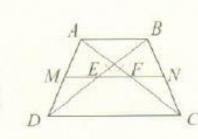
7

Si les côtés non parallèles d'un trapèze sont égaux alors ce trapèze est isocèle.

Dans un trapèze isocèle, les diagonales sont égales.



Dans un trapèze isocèle, les diagonales sont égales.



Réciproquement, soit le cas d'un trapèze ABCD dans lequel les diagonales sont égales. Le segment joignant les milieux M et N des côtés [AD] et [BC] respectivement coupe [AC] en E et

[BD] en F. On a donc (MN) parallèle à (AB) et (CD).

D'autre part, dans le triangle ADC, [MF] est parallèle à [DC] issu du milieu M de [AD]; il passe donc par le milieu du troisième côté [AC]. D'où : F est le milieu de [AC].

En considérant le triangle BCD, on démontre de la même façon que E est le milieu de [BD].

Ainsi, on a ED = FC (car BD = AC) et par suite EFCD est un trapèze isocèle et l'on a $\widehat{ACD} = \widehat{BDC}$.

Enfin, on démontre que les triangles ACD et BDC sont égaux d'après le cas C.A.C., et l'on constate que AD = BC, c'est-à-dire que ABCD est un trapèze isocèle. D'où :

Un trapèze dont les diagonales sont égales est isocèle.

